

Embedded Systems Design and Development

Course Objectives

Understand the fundamentals of Embedded Systems, their architecture, and applications across industries. Learn to design, program, and debug embedded hardware-software solutions.

Gain hands-on experience with microcontrollers, sensors, actuators, and communication interfaces.

Develop skills in real-time system design, low-level programming, and hardware interfacing.

Explore career opportunities and industry tools in embedded systems development.

Prerequisites

Basic understanding of electronics and digital systems.

Familiarity with at least one programming language, preferably C or C++.

Knowledge of microcontrollers and their basic architecture is helpful but not mandatory.

Understanding of basic communication protocols like UART, SPI, and I2C is a plus.

Tools & Environment

Hardware: Microcontrollers (Arduino, STM32, ESP32), sensors, actuators. Software: Arduino IDE, Keil μ Vision, MPLAB X, STM32CubeIDE, PlatformIO.

Languages: C, C++, Assembly, Python for prototyping.

Debugging Tools: Serial Monitor, Logic Analyzer, Oscilloscope.

Sr.	Title	Topic	Objective
1	Introduction to Embedded Systems	Basics of Embedded Systems	Understand what embedded systems are, their characteristics, and differences from general-purpose computers.
2	Embedded System Components	Hardware & Software	Learn about microcontrollers, memory, input/output devices, and firmware.
3	Microcontrollers vs Microprocessors	Architecture	Differentiate between MCUs and MPUs, with examples.
4	Real-Time Operating Systems	RTOS Concepts	Understand real-time constraints, multitasking, and scheduling.
5	Programming Embedded Systems	C/C++ & Assembly	Write and compile programs for embedded devices.
6	Communication Protocols	UART, SPI, I2C, CAN	Learn interfacing techniques for sensors and actuators.
7	IoT and Embedded Systems	IoT Applications	Understand IoT architectures and smart device integration.
8	Debugging Techniques	Testing & Debugging	Use debugging tools and methods to test embedded applications.
9	Embedded Systems in Automotive	ECU & ABS	Explore automotive embedded systems and safety-critical design.
10	Embedded Systems in Healthcare	Medical Devices	Study examples like pacemakers and infusion pumps.
11	Low Power Design	Energy Efficiency	Design battery-powered embedded devices efficiently.
12	Embedded Systems Project	Hands-on	Build a working embedded system using MCUs and sensors.

Minimum Completion Criteria

Complete all modules and quizzes.
Submit at least one hands-on embedded systems project.
Participate in weekly practical sessions.
Maintain at least 80% attendance.

Certificate Details

Upon successful completion, learners will receive a Government-Recognized Certificate from Vidyawan, a registered MSME enterprise.

One Month Internship Certificate

Weekly Marathon Participation Certificate

Performance-Based Badge System

- Gold Badge For Top Performers (90%+ score, completed 4+ projects)
- Silver Badge For consistent performance (70–89%)
- Copper/Participant Badge For all learners who complete the program

Contact Information

For queries, registration, or collaboration, feel free to contact us: Vidyawan – Internship & Skill Development Platform (A Government-registered MSME – UDYAM-WB-14-0205610)

- Email: contact.vidyawan@gmail.com
- Website: www.vidyawan.in (Get in touch section)
- Location: West Bengal, India
- Follow us for updates and upcoming internships